irpas技术客

Linux内核学习10——编写字符设备驱动程序_Backlight~~_linux编写字符设备驱动程序

irpas 5490

一、

在linux内核中,字符设备是由cdev结构体来描述的,它位于/include/linux/cdev.h中

/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_CDEV_H #define _LINUX_CDEV_H #include <linux/kobject.h> #include <linux/kdev_t.h> #include <linux/list.h> #include <linux/device.h> struct file_operations; struct inode; struct module; struct cdev { struct kobject kobj; struct module *owner; const struct file_operations *ops; struct list_head list; //list字段来将所有的字符设备组织成一个链表。每个设备由主设备号与次设备号确定, dev_t dev; //dev就是字符设备的设备号,包括主设备号和次设备号 unsigned int count; //count字段是同一个主设备号中次设备号的个数 } __randomize_layout; void cdev_init(struct cdev *, const struct file_operations *); struct cdev *cdev_alloc(void); void cdev_put(struct cdev *p); int cdev_add(struct cdev *, dev_t, unsigned); void cdev_set_parent(struct cdev *p, struct kobject *kobj); int cdev_device_add(struct cdev *cdev, struct device *dev); void cdev_device_del(struct cdev *cdev, struct device *dev); void cdev_del(struct cdev *); void cd_forget(struct inode *); #endif

linux的设备驱动程序可以由两种形式来定义,一种是全局静态变量,另一种是使用内核提供的API,这里采用第二种方法来实现一个简单的虚拟设备的驱动,并且实现它的读写功能。

首先看内核态代码

device_drive.c

# include <linux/module.h> # include <linux/fs.h> # include <linux/uaccess.h> # include <linux/init.h> # include <linux/cdev.h> # define DEMO_NAME "my_demo_dev" static dev_t dev; //设备号 static struct cdev *demo_cdev; static signed count = 1; static int demodrv_open(struct inode *inode, struct file *file) { //Linux内核提供的读取主设备号和次设备号的方法 int major = MAJOR(inode->i_rdev); int minor = MINOR(inode->i_rdev); printk("%s: major=%d, minor=%d\n",__func__,major,minor); //__func__宏获取当前的函数名 return 0; } static ssize_t demodrv_read(struct file *file, char __user *buf,size_t lbuf,loff_t *ppos) { printk("%s enter\n",__func__); //打印函数名 return 0; } static ssize_t demodrv_write(struct file *file, const char __user *buf,size_t count,loff_t *f_pos) { printk("%s enter\n",__func__); return 0; } //给设备的操作,和在文件系统中使用的是相同的结构体 static const struct file_operations demodrv_fops = { .owner = THIS_MODULE, .open = demodrv_open, .read = demodrv_read, .write = demodrv_write }; static int __init simple_char_init(void) { int ret; ret = alloc_chrdev_region(&dev,0,count,DEMO_NAME); if(ret) { printk("failed to allocate char device region\n"); return ret; } demo_cdev = cdev_alloc(); //分配空间 if(!demo_cdev) { printk("cdev_alloc failed\n"); goto unregister_chrdev; } cdev_init(demo_cdev,&demodrv_fops); ret = cdev_add(demo_cdev,dev,count); if(ret) { printk("cdev_add failed\n"); goto cdev_fail; } printk("successed register char device: %s\n",DEMO_NAME); printk("Major number = %d,minor number = %d\n",MAJOR(dev),MINOR(dev)); return 0; cdev_fail: cdev_del(demo_cdev); unregister_chrdev: unregister_chrdev_region(dev,count); return ret; } static void __exit simple_char_exit(void) { printk("removing device\n"); if(demo_cdev) cdev_del(demo_cdev); unregister_chrdev_region(dev,count); } module_init(simple_char_init); module_exit(simple_char_exit); MODULE_LICENSE("GPL");

内核模块初始化函数执行alloc_chrdev_region函数,进入源代码,位于fs/char_dev.c.

/** * alloc_chrdev_region() - register a range of char device numbers * @dev: output parameter for first assigned number * @baseminor: first of the requested range of minor numbers * @count: the number of minor numbers required * @name: the name of the associated device or driver * * Allocates a range of char device numbers. The major number will be * chosen dynamically, and returned (along with the first minor number) * in @dev. Returns zero or a negative error code. */ int alloc_chrdev_region(dev_t *dev, unsigned baseminor, unsigned count, const char *name) { struct char_device_struct *cd; cd = __register_chrdev_region(0, baseminor, count, name); if (IS_ERR(cd)) return PTR_ERR(cd); *dev = MKDEV(cd->major, cd->baseminor); return 0; }

之后会执行__register_chrdev_region函数。第一个参数为0,自动分配主设备号。

之后使用cdev_alloc函数来分配空间,这里定义的是struct cdev* 类型

接下来会执行cdev_init,并执行fops的赋值操作

进入源代码来看一下:cedv_alloc会分配空间,并返回一个cdev结构体的指针。cdev_init初始化cdev,多了一步赋值fops

如果定义的是struct cdev结构体而不是指针类型,只需要执行cdev_init()就可以了

/** * cdev_alloc() - allocate a cdev structure * * Allocates and returns a cdev structure, or NULL on failure. */ struct cdev *cdev_alloc(void) { struct cdev *p = kzalloc(sizeof(struct cdev), GFP_KERNEL); if (p) { INIT_LIST_HEAD(&p->list); kobject_init(&p->kobj, &ktype_cdev_dynamic); } return p; } /** * cdev_init() - initialize a cdev structure * @cdev: the structure to initialize * @fops: the file_operations for this device * * Initializes @cdev, remembering @fops, making it ready to add to the * system with cdev_add(). */ void cdev_init(struct cdev *cdev, const struct file_operations *fops) { memset(cdev, 0, sizeof *cdev); INIT_LIST_HEAD(&cdev->list); kobject_init(&cdev->kobj, &ktype_cdev_default); cdev->ops = fops; }

接下来执行cdev_add,把这个设备添加到系统中。

在实现的方法中,我们在demodrv_open操作中打印主次设备号

在demodrv_read和demodrv_write中仅打印函数名

Makefile

#Makefile文件注意:假如前面的.c文件起名为first.c,那么这里的Makefile文件中的.o文 #件就要起名为first.o 只有root用户才能加载和卸载模块 obj-m:=device_drive.o #产生device_drive模块的目标文件 #目标文件 文件 要与模块名字相同 CURRENT_PATH:=$(shell pwd) #模块所在的当前路径 LINUX_KERNEL:=$(shell uname -r) #linux内核代码的当前版本 LINUX_KERNEL_PATH:=/usr/src/linux-headers-$(LINUX_KERNEL) all: make -C $(LINUX_KERNEL_PATH) M=$(CURRENT_PATH) modules #编译模块 #[Tab] 内核的路径 当前目录编译完放哪 表明编译的是内核模块 clean: make -C $(LINUX_KERNEL_PATH) M=$(CURRENT_PATH) clean #清理模块

编译并插入内核模块

使用dmesg查看内核消息

在这里可以看到已经成功注册了字符设备,my_demo_dev是设备名,主设备号是243,次设备号是0

另外,生成的设备需要在/dev目录下生成对应的节点,这里需要手动生成

使用mknod命令

mknod /dev/demo_drv c 243 0

c代表字符设备,主设备号243,次设备号为0

之后查看/dev目录的情况

在这里

接下来使用用户空间的测试程序来测试这个字符设备驱动

用户空间种测试字符设备的程序test.c

# include <stdio.h> # include <fcntl.h> # include <unistd.h> # define DEMO_DEV_NAME "/dev/demo_drv" int main() { char buffer[64]; int fd; fd = open(DEMO_DEV_NAME,O_RDONLY); if(fd<0) { printf("open device %s failed\n",DEMO_DEV_NAME); return -1; } read(fd,buffer,64); close(fd); return 0; }

在这个测试文件中定义设备的路径

进行一个open操作,read操作只打印函数名

编译用户测试程序并执行

使用dmesg打印内核消息

打印出了open和read的方法

二、

字符设备驱动也可以采用misc机制来进行注册,也就是Linux将一些不符合预先确定的字符设备划分为杂项设备,这类设备的主设备号是10,内核中使用miscdevice结构体来描述

如果使用misc机制来创建设备,就需要定义miscdevice结构体,来看一下第二个实验

内核模块

drive2.c

# include <linux/module.h> # include <linux/fs.h> # include <linux/uaccess.h> # include <linux/init.h> # include <linux/cdev.h> //加入misc机制 # include <linux/miscdevice.h> # include <linux/kfifo.h> DEFINE_KFIFO(mydemo_fifo,char,64); //设备名 # define DEMO_NAME "my_demo_dev" static struct device *mydemodrv_device; static int demodrv_open(struct inode *inode, struct file *file) { int major = MAJOR(inode->i_rdev); int minor = MINOR(inode->i_rdev); printk("%s: major=%d, minor=%d\n",__func__,major,minor); return 0; } static ssize_t demodrv_read(struct file *file, char __user *buf,size_t count,loff_t *ppos) { int actual_readed; int ret; ret = kfifo_to_user(&mydemo_fifo,buf, count, &actual_readed); if(ret) return -EIO; printk("%s,actual_readed=%d,pos=%lld\n",__func__,actual_readed,*ppos); return actual_readed; } static ssize_t demodrv_write(struct file *file, const char __user *buf,size_t count,loff_t *ppos) { unsigned int actual_write; int ret; ret = kfifo_from_user(&mydemo_fifo,buf, count, &actual_write); if(ret) return -EIO; printk("%s: actual_write=%d,ppos=%lld\n",__func__,actual_write,*ppos); return actual_write; } static const struct file_operations demodrv_fops = { .owner = THIS_MODULE, .open = demodrv_open, .read = demodrv_read, .write = demodrv_write, }; static struct miscdevice mydemodrv_misc_device = { .minor = MISC_DYNAMIC_MINOR, .name = DEMO_NAME, .fops = &demodrv_fops, //设备相应的操作 }; static int __init simple_char_init(void) { int ret; ret = misc_register(&mydemodrv_misc_device); if(ret) { printk("failed register misc device\n"); return ret; } mydemodrv_device = mydemodrv_misc_device.this_device; printk("successed register char device: %s\n",DEMO_NAME); return 0; } static void __exit simple_char_exit(void) { printk("removing device\n"); misc_deregister(&mydemodrv_misc_device); } module_init(simple_char_init); module_exit(simple_char_exit); MODULE_LICENSE("GPL");

来看内核模块初始化函数,首先使用内核API:misc_register()函数来注册,可以自动创建设备结点,不需要mknod来手动创建设备节点,传入的参数是定义的miscdevice结构体的地址

Makefile

#Makefile文件注意:假如前面的.c文件起名为first.c,那么这里的Makefile文件中的.o文 #件就要起名为first.o 只有root用户才能加载和卸载模块 obj-m:=drive2.o #产生drive2模块的目标文件 #目标文件 文件 要与模块名字相同 CURRENT_PATH:=$(shell pwd) #模块所在的当前路径 LINUX_KERNEL:=$(shell uname -r) #linux内核代码的当前版本 LINUX_KERNEL_PATH:=/usr/src/linux-headers-$(LINUX_KERNEL) all: make -C $(LINUX_KERNEL_PATH) M=$(CURRENT_PATH) modules #编译模块 #[Tab] 内核的路径 当前目录编译完放哪 表明编译的是内核模块 clean: make -C $(LINUX_KERNEL_PATH) M=$(CURRENT_PATH) clean #清理模块

编译并插入内核模块

查看/dev下的内容 ll /dev

可以看到生成的设备文件主设备号为10misc,次设备号为53

用户态测试程序test.c

# include <stdio.h> # include <fcntl.h> # include <unistd.h> # include <malloc.h> # include <string.h> # define DEMO_DEV_NAME "/dev/my_demo_dev" int main() { char buffer[64]; int fd; int ret; size_t len; char message[] = "hello"; char *read_buffer; len = sizeof(message); fd = open(DEMO_DEV_NAME,O_RDWR); if(fd<0) { printf("open device %s failed\n",DEMO_DEV_NAME); return -1; } //向设备写数据 ret = write(fd,message,len); if(ret != len) { printf("cannot write on device %d,ret=%d\n",fd,ret); return -1; } read_buffer = malloc(2*len); memset(read_buffer,0,2*len); //关闭设备 ret = read(fd,read_buffer,2*len); printf("read %d bytes\n",ret); printf("read buffer=%s\n",read_buffer); close(fd); return 0; }

执行一次open、write和read操作

使用gcc来编译执行

可以看到读取了hello,是6个字节

使用dmesg查看内核消息,也打印了相应的信息

这就是给大家分享的简单的字符设备驱动程序。


1.本站遵循行业规范,任何转载的稿件都会明确标注作者和来源;2.本站的原创文章,会注明原创字样,如未注明都非原创,如有侵权请联系删除!;3.作者投稿可能会经我们编辑修改或补充;4.本站不提供任何储存功能只提供收集或者投稿人的网盘链接。

标签: #linux编写字符设备驱动程序 #GPL20 #ifndef #_LINUX_CDEV_H #include